Abstract
Surface films of two copolymers of ethylene oxide (E) and butylene oxide (B), namely E23B8 and E87B18, have been examined by Brewster angle microscopy (BAM) and atomic force microscopy (AFM). Isotherms taken on unsupported films of these copolymers at the air-water interface showed a clear gas to liquid phase transition for E57B18 and a barely discernible phase transition for E23B8. The BAM studies showed a gradual brightening of the films as the surface pressure was increased, which was associated with a film thickening and/or a film densification. Several bright spots were also observed within the films, with the number of spots increasing gradually as the film surface pressure was increased. AFM studies of these films did not show any localized ordering, which fits in with the results from our previous X-ray study of these copolymers [Hodges, C. S.; Neville, F.; Konovalov, O.; Gidalevitz, D.; Hamley, I. W.; Langmuir 2006, 22 (21), 8821-8825], where no long-range ordering was observed. AFM imaging showed two sizes of particulates that were irregularly spaced across the film. The larger particulates were associated with silica contaminants from the copolymer synthesis, whereas the smaller particulates were assumed to be aggregated copolymer. An analysis of the semidilute region of the isotherm showed that while both copolymers had intermixed ethylene oxide and butylene oxide units, the lower molecular weight E23B8 copolymer manifested significantly more intermixing than E87B18.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.