Abstract

Thin elastic circular rings under uniform pressure have been extensively studied by many researchers. Both the deflection and buckling behavior of rings were considered in these studies, but most have focused on the small deformations analysis approach. Even though the use of the small deformations assumption helps find the deflections of the ring prior to reaching the buckling load, it does not accurately capture the behavior of the ring after buckling. The in-plane large deformations analysis of thin elastic circular rings under nonuniform pressure explored in this paper expands on previous work and investigates varying pressure profiles. The pressure profiles studied here can be described by p=p01+qcosnθ. The large deformations assumption allows for the investigating of buckling loads as well as post-buckling behavior. Nonuniform normal pressure acting on a thin elastic circular ring results in a behavior that is described by a second-order ordinary differential equation (ODE) of the Duffing type, which is solved here through a numerical approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call