Abstract

The response of alloys based on the intermetallic compound NiTi to high-strain-rate and shock loading conditions has recently attracted attention. In particular, similarities between it, and other shape memory materials such as the alloy U–6%Nb in the propagation of the plastic wave in Taylor cylinders are of significant interest. In this article, the Hugoniot is measured using multiple manganin stress gauges, either embedded between plates of the NiTi alloy, or supported with blocks of polymethylmethacrylate. In this way, the shock stress, shock velocity, and details of the shock wave profile have been gathered. An inflection at lower stresses has been found in the Hugoniot curve (stress-particle velocity), and has been ascribed to the martensitic phase transformation that is characteristic of the shape memory effect in this alloy. In a similar way, the variation of shock velocity with particle velocity has been found to be nonlinear, contrary to other pure metal and alloy systems. Finally, a break in slope in the rising part of the shock profile has been identified as the Hugoniot elastic limit in NiTi. Conversion to the one-dimensional stress equivalent, and comparison to quasistatic data indicates that NiTi exhibits significant strain-rate sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call