Abstract
This paper studies the performance of the a posteriori recursive least squares lattice filter in the presence of a nonstationary chirp signal. The forward and backward partial correlation (PARCOR) coefficients for a Wiener-Hopf optimal filter are shown to be complex conjugates for the general case of a nonstationary input with constant power. Such an optimal filter is compared to a minimum mean square error based least squares lattice adaptive filter. Expressions are found for the behavior of the first stage of the adaptive filter based on the least squares algorithm. For the general nth stage, the PARCOR coefficients of the previous stages are assumed to have attained Wiener-Hopf optimal steady state. The PARCOR coefficients of such a least squares adaptive filter are compared with the optimal coefficients for such a nonstationary input. The optimal lattice fitter is seen to track a chirp input without any error, and the tracking lag in such an adaptive filter is due to the least squares update procedure. The expression for the least squares based PARCOR coefficients are found to contain two terms: a decaying convergence term due to the weighted estimation procedure and a tracking component that asymptotically approaches the optimal coefficient value. The rate of convergence is seen to depend inversely on the forgetting factor. The tracking lag of the filter is derived as a function of the rate of nonstationarity and the forgetting factor. It is shown that for a given chirp rate there is a threshold adaptation constant below which the total tracking error is negligible. For forgetting factors above this threshold, the error increases nonlinearly. Further, this threshold forgetting factor decreases with increasing chirp rate. Simulations are presented to validate the analysis. >
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.