Abstract
We prove that the sign of the Gaussian curvature, which is closely related to the diagonalizability of the shape operator, of any timelike minimal surface in the 3-dimensional Lorentz-Minkowski space is determined by the degeneracy and the signs of the two null regular curves that generate the surface. We also investigate the behavior of the Gaussian curvature near singular points of a timelike minimal surface with some kinds of singular points, which is called a minface. In particular we determine the sign of the Gaussian curvature near any non-degenerate singular point of a minface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.