Abstract
A property of central interest for theoretical study of nanoconfined fluids is the density distribution of molecules. The density profile of the hard-sphere fluids confined within nanoslit pores is a key quantity for understanding the configurational behavior of confined real molecules. In this report, we produce the density profile of the hard-sphere fluid confined within nanoslit pores using the fundamental-measure density-functional theory (FM-DFT). FM-DFT is a powerful approach to studying the structure and the phase behavior of nanoconfined fluids. We report the computational procedure and the calculated data for nanoslits with different widths and for a wide range of hard-sphere fluid densities. The high accuracy of the resulting density profiles and optimum grid-size values in numerical integration are verified. The data reveal a number of interesting features of hard spheres in nanoslits, which are different from the bulk hard-sphere systems. These data are also useful for a variety of purposes, including obtaining the shear stress, thermal conductivity, adsorption, solvation forces, free volume and prediction of phase transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.