Abstract

Abstract The selective removal of sulfur species in atmospheric residue (AR) is strongly wanted since the species of the hydrodesulfurized AR (HDS-AR) define the sulfur content of the product gasoline in the subsequent fluid catalytic cracking (FCC). Hence, the correlations between sulfur species in HDS-AR and FCC gasoline were explored in the present study. HDS-AR was fractionated into vacuum gas oil (VGO) and vacuum residue (VR) by distillation. Reactivities of HDS-AR ( S = 3000 mass ppm) and its VGO ( S = 900 mass ppm) were measured by micro activity test to clarify which fractions and sulfur compounds in HDS-AR were converted into gasoline and its sulfur species. The yields and sulfur contents of the product gasoline were 45.0 mass% and 52 mass ppm from HDS-AR and 47.7 mass% and 14 mass ppm from VGO, respectively. The sulfur content of the gasoline from HDS-AR was markedly higher than that from HDS-VGO. The saturate and aromatic fractions in HDS-AR are mainly converted to the gasoline in the FCC process, providing similar gasoline yields from HDS-VGO and HDS-AR. Thiophene, methylthiophenes, and benzothiophenes were major sulfur species in both gasolines from HDS-AR and HDS-VGO. Such sulfur species are concluded to be derived from benzothiophenes in VGO and dibenzothiophenes in VR fractions, respectively through hydrogen transferring ring opening and dealkylation during FCC. Sulfur compounds are also produced from H 2 S and olefins in FCC, increasing the sulfur content in the product gasoline. The larger sulfur content in the gasoline from HDS-AR than that from HDS-VGO is ascribed to more H 2 S being produced during the FCC process as well as dibenzothiophenes being present in the feed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call