Abstract

This paper presents an experimental study of the separated behavior of short ( L/H=3) high strength concrete-filled rectangular hollow section (RHS) tubes concentrically loaded in compression to failure. A total of 50 specimens were tested. Experimental results showed that the concrete strength influenced the failure pattern of the specimen. The height-to-breadth ratio of the rectangular tube (varying from 1.0 to 1.6) had no evident influence on the ultimate bearing capacity of the specimen. Then based on the experimental results, a numerical separation method was successfully used to separate the compressive load carried by the steel tube and the core concrete. The equivalent One-Dimensional nonlinear stress-strain models of the steel and the confined concrete were suggested, which can be used to determine the overall behavior of the high strength concrete-filled RHS tubes. The stress-strain models have been used to numerically analyze the behavior of high strength concrete-filled RHS tubes. The numerical results are compared with the experimental results and they agreed well with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.