Abstract

Use of thin, nearly intrinsically doped Si electrodes having implanted, interdigitated n+ and p+ back contact points has allowed electrical control over the potential of either electrons or holes in the solid. During potential control at the n+ point contacts, the open-circuit potential of holes could be monitored, while during potential control of the p+ point contacts, the open-circuit potential of electrons was measured. In combination with current density−voltage measurements of either electrons or holes passing through the back contact points, these data allowed a comparison of the behavior of a given carrier type when generated by an applied bias (i.e., as majority carriers) relative to their behavior when generated with band gap illumination of the solid (as minority carriers). Data have been collected for Si/CH3OH junctions having 1,1‘-dimethylferrocene+/0, decamethylferrocene+/0, methyl viologen2+/+, and cobaltocene+/0 as redox couples. These data have been used to validate certain key prediction...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.