Abstract

An equation of state of nuclear matter describing the quark–hadron phase transition is derived within a variant of the MIT bag model. This equation of state is analyzed in order to test the criteria of instability and neutral stability of relativistic shock waves. It is shown that Taub adiabats passing through the phase transition region contain segments with an ambiguous representation of the shock-wave discontinuity, which means the possibility of splitting a shock wave with the formation of a combined compression wave. Isentropes passing through the mixed phase region have bends and are not completely convex (in the p–T plane, where T is the generalized specific volume); as a result, shock and combined rarefaction waves can appear. Numerical simulation has confirmed the appearance of these singularities of wave processes in nuclear matter in the region of the phase transition from the hadronic state to the quark–gluon plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.