Abstract

Due to rapid industrialization, a huge amount of industrial waste such as red mud, fly ash, and crusher dust is being produced in enormous quantities every day causing environmental pollution to a great extent. Utilization of this waste in a better way is a challenge for the present society. Here in the present study, few laboratory model tests have been conducted on isolated rectangular footing (15 cm × 30 cm) taking crusher dust at loose and medium relative density state as a foundation material instead of sand or clay. The test was conducted on unreinforced and geosynthetic reinforced crusher dust to find the bearing capacity of the footing. Geosynthetic as a reinforcing element was used to enhance the bearing capacity of footing. The experimental results are presented in terms of bearing capacity of reinforced footing with respect to the unreinforced condition and also with the variation of the reinforcement layer. The bearing capacity ratio (BCR) has been obtained with respect to the unreinforced case. It is found that two layers and three layers of reinforcement showed a higher result compared to a single layer of reinforcement. Bearing capacity is increasing with an increase in relative density. It has been observed that the inclusions of geosynthetic reinforcement to foundation soil at loose state increased the bearing capacity by 85%, 107%, and 130% for single, double, and three layers of reinforcement and for the medium dense state, it is increasing by 77%, 113%, and 133%, respectively, with respect to unreinforced condition. The BCR is increasing with an increase in reinforcement and also with an increase in relative density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.