Abstract
In this study, we propose an approach to investigate the relationship between MOND theory and the holographic principle by incorporating q-deformed theory. We first present a brief overview of Verlinde's entropic gravity assumption, which suggests that gravity can be interpreted as an entropic force arising from the statistical mechanics of quantum fields. Some thermo-statistical properties of q-deformed fermion gas model in two spatial dimensions are introduced. At the low-temperature limit, we derive the q-deformed thermal energy and analyze the impacts of fermionic q-deformation on MOND theory. Specifically, we consider the q-deformed Fermi-Dirac statistics of the bits on the holographic screen and examine MOND theory depending on q-deformed acceleration scale. Deformed Friedmann equation is studied by taking into account Friedmann–Robertson–Walker (FRW) universe. This equation shows a modified identification of the evolution of the universe that is compatible with both MOND theory and the holographic principle
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.