Abstract

The behavior of purified rabbit plasminogen at the luminal surface of the uninjured and deendothelialized rabbit aorta has been studied in vivo and in vitro. After intravenous injection, 125I-plasminogen associated rapidly with the endothelium (approximately 0.1 pmol/cm2 at saturation) and passed through to accumulate in the subendothelium. At two to 15 hours after injection, 11 to 15 times more radioactivity was associated with the subendothelium than with the endothelium. Removal of the endothelium by balloon catheter led to a rapid adsorption of 125I-plasminogen by the luminal surface of the vessel; saturation (9.1 pmol/cm2) was attained at ten to 20 minutes after deendothelialization. Of the adsorbed plasminogen (radioactivity), only 2% to 4% was associated with the adherent platelet monolayer. Uptake of 125I-plasminogen by the deendothelialized vessel was not significantly inhibited by epsilon-aminohexanoic acid whether injected before or after the 125I-plasminogen. No evidence of plasmin activity at the aorta surface was found from either transmission electron microscopy studies or from amidolytic assays of plasminogen-saturated deendothelialized aorta samples before or after urokinase treatment. Balloon catheter treatment in vivo, however, generated significant antiplasmin activity of the deendothelialized aorta surface. We conclude that plasmin formed in vivo is probably inactivated by the antiplasmin activity that is associated with the subendothelium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.