Abstract

Soot-blower operation leads to thermal-cyclic-oxidation conditions of heat-resistant steels in conventional power stations. The consequence may be failure of the protective oxide scales and increased corrosive attack. The behavior of protective oxide scales on 12Cr-1Mo steel was investigated under isothermal conditions at 650°C and under thermal cycling conditions between 650 and 300°C (200°C). The tests were performed in air, air + 0.5%SO2, simulating the fire side, and Ar-5% H2-50% H2O, simulating the steam side. Complete heat-exchanger tubes were used as specimens. The main instrument for the detection of scale failure was acoustic-emission analysis. In air and air + 0.5% SO2 the M2O3 scales with M = Fe, Cr were very thin and did not show significant failure either during isothermal or during cyclic oxidation. The thicker scales formed in Ar-5% H2-50% H2O, consisting of several partial layers, failed even during isothermal oxidation due to geometrically-induced growth stresses in the scale. Thus, in the thermal-cycling cooling periods there was only very little additional scale cracking. The scale behavior can be explained consistently by applying the existing quantitative models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call