Abstract

Synergistic effects of nuclear (Sn) and electronic (Se) energy losses are investigated by comparing the damage accumulated in selected oxide (c-ZrO2, MgO, Gd2Ti2O7) and carbide (SiC) single crystals irradiated with single and dual low and high energy ion beams. Channeling results show that the Sn/Se synergy induces a strong decrease of the damage in MgO and SiC (where amorphization is prevented) and almost no effects in c-ZrO2 and Gd2Ti2O7. Raman and TEM results confirm this statement. The healing of defects generated by nuclear collisions in MgO and SiC is due to the electronic excitation produced in the wake of swift ions. These results present a strong interest for technological applications in the nuclear industry where expected cooperative Sn/Se effects may preserve the integrity of nuclear materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call