Abstract

The engineering behavior of nonplastic silts is more difficult to characterize than is the behavior of clay or sand. Especially, behavior of silty soils is important in view of the seismicity of several regions of alluvial deposits in the world, such as the United States, China, and Turkey. In several hazards substantial ground deformation, reduced bearing capacity, and liquefaction of silty soils have been attributed to excess pore pressure generation during dynamic loading. In this paper, an experimental study of the pore water pressure generation of silty soils was conducted by cyclic triaxial tests on samples of reconstituted soils by the slurry deposition method. In all tests silty samples which have different clay percentages were studied under different cyclic stress ratios. The results have showed that in soils having clay content equal to and less than 10%, the excess pore pressure ratio buildup was quicker with an increase in different cyclic stress ratios. When fine and clay content increases, excess pore water pressure decreases constant cyclic stress ratio in nonplastic silty soils. In addition, the applicability of the used criteria for the assessment of liquefaction susceptibility of fine grained soils is examined using laboratory test results.

Highlights

  • Silt is different from clay and sand

  • They stated that when liquefiable soil has a liquid limit less than 32% clay content is less than 10%

  • The present study focused on how the influence of the clay fraction affected dynamic properties under different cyclic stress ratios

Read more

Summary

Introduction

Silt is different from clay and sand. In some parts of the world, silty soils are widespread. Several hazards are seen during dynamic loading including substantial ground deformation, reduced bearing capacity, and liquefaction of silty soil. The issue of the liquefaction potential of sands appeared in the literature after the 1964 Niigata and 1964 Alaskan earthquakes. The response of silt to seismic activity has been investigated extensively in recent years because of unexpectedly high rates of ground failure observed following the 1975 Haicheng earthquake, 1976 Tangshan earthquake, 1989 Loma Prieta earthquake, 1994 Northridge earthquake, 1999 Kocaeli earthquake, and 1999 Chi-Chi earthquake events [8,9,10,11,12]. Many authors have investigated the liquefaction behavior of silt, silt clay, sandy silt, and sandy clay [13,14,15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call