Abstract

Foundations of offshore structures are designed to withstand a combination of static and cyclic loads due to ocean waves. Wave action on offshore structures can cause a significant amount of cyclic horizontal and vertical forces to be transmitted to the soil through the foundation. In all these cases, these cyclic loads are considered to be superimposed over the initial sustained static stress due to the self-weight of structures. This study considers various factors that influence the development of deformation and pore water pressure in a typical cemented marine clay. These results show that the sustained static shear stress significantly influences the strength and deformation behavior of marine clay under cyclic loading. Up to a certain range of sustained static stress, there is an improvement in strength during cyclic loading and the cyclic strains are greatly reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.