Abstract

Uncured turkey breast, commercially available with or without a mixture of potassium lactate and sodium diacetate, was sliced, inoculated with a 10-strain composite of Listeria monocytogenes, vacuum-packaged, and stored at 4 °C, to simulate contamination after a lethal processing step at the plant. At 5, 15, 25 and 50 days of storage, packages were opened, slices were tested, and bags with remaining slices were reclosed with rubber bands; this simulated home use of plant-sliced and -packaged product. At the same above time intervals, portions of original product (stored at 4 °C in original processing bags) were sliced and inoculated as above, and packaged in delicatessen bags, simulating contamination during slicing/handling at retail or home. Both sets of bags were stored aerobically at 7 °C for 12 days to simulate home storage. L. monocytogenes populations were lower ( P<0.05) during storage in turkey breast containing a combination of lactate and diacetate compared to product without antimicrobials under both contamination scenarios. Due to prolific growth of the pathogen under the plant-contamination scenario in product without lactate-diacetate during vacuum-packaged storage (4 °C), populations at 3 days of aerobic storage (7 °C) of such product ranged from 4.6 to 7.4 log cfu/cm 2. Under the retail/home-contamination scenario, mean growth rates (log cfu/cm 2/day) of the organism during aerobic storage ranged from 0.14 to 0.16, and from 0.25 to 0.51, in product with and without lactate-diacetate, respectively; growth rates in turkey breast without antimicrobials decreased ( P<0.05) with age of the product. Overall, product without antimicrobials inoculated to simulate plant-contamination and product with lactate-diacetate inoculated to simulate retail/home-contamination were associated with the highest and lowest pathogen levels during aerobic storage at 7 °C, respectively. However, 5- and 15-day-old turkey breast without lactate-diacetate stored aerobically for 12 days resulted in similar pathogen levels (7.3–7.7 log cfu/cm 2), irrespective of contamination scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.