Abstract

We examined the effects of a two-thirds hepatectomy in the adult rat on the activities of the three L-threonine-degrading enzymes, L-threonine dehydratase, L-threonine aldolase and L-threonine dehydrogenase. Noticeable variations were observed which did not occur in either sham-operated or turpentine-treated rats and were not linked to food intake. They were considered specific to the regenerating liver. When the reactions were followed in vitro, L-threonine deaminase and L-threonine aldolase were significantly lower for the first 12-24 h: L-threonine dehydrogenase decreased only after 48 h. These results are linked to a decrease in the enzyme concentration in the tissue. L-Serine and L-threonine liver concentrations increased 2-3-fold during the same periods. When the activities were evaluated in vivo, the levels of the first two enzymes remained constant for 24 h, but increased after 48 h; L-threonine dehydrogenase increased between 12 and 48 h. The in vivo activity of the enzymes was reflected by total L-threonine degradation, which had a single sharp peak at 48 h. The asynchronous variations in enzyme activity are related to the differences in protein metabolism which occur in the regenerating liver, and are the consequence of a new transient differential control. The changes observed are significant in liver regeneration; they regulate the consumption and the serum and liver levels of L-serine and L-threonine, setting them aside for protein synthesis. They minutely control the flux of amino acids toward gluconeogenesis, since, during the first 48 h after partial hepatectomy, the production of glucose is ensured principally by lactate; the contribution of L-threonine seems to be more significant only at 48 h. These findings are useful in the study of the regulation of the enzymes involved in amino acid metabolism during liver regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call