Abstract

The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size <TEX>$600{\times}600{\times}30$</TEX> mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, <TEX>$V_f$</TEX> = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.