Abstract
We perform total-energy electronic-structure calculations of a water molecule inside a (7, 7) carbon nanotube/boron nitride nanotube (CNT/BNNT) heterojunction. The van der Waals interaction is also considered in this study. We find that the equilibrium distance between the water molecule and the wall of the CNT (BNNT) is ≈ 3.3 Å, and the encapsulation energy is 0.22 eV (0.25 eV). The energy profile along the tube axis exhibits a dramatic change in the vicinity of the heterojunction. A speed change of water flow is expected to occur near the heterojunction. Such information would provide valuable insight in nanostructure design for nanofluidics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.