Abstract

This paper introduces simple glued laminated (glulam) timber columns reinforced by near-surface-mounted carbon-fiber-reinforced polymer (CFRP) laminates (GTMC columns). Twenty-four columns were fabricated and tested under eccentric compression loading to validate the effectiveness of this kind of column. In accordance with the degrees of eccentricity, specimens were divided into three groups. In each group, one column without inlaid CFRP laminates served as a control column, while the others were inlaid with CFRP laminates. All columns were tested for ultimate load capacity, displacement ductility, failure mode, and energy dissipation capacity. Test results show that inlaid CFRP laminates are effective in increasing ultimate load capacity and deformability. Meanwhile, the corresponding analytical model was also derived to predict the ultimate load capacity of GTMC columns. A comparison of the predicted and tested ultimate load capacities demonstrated that the analytical model is generally able to evaluate the ultimate load capacity of GTMC columns with an average underestimation of 8.7%. Furthermore, a finite-element analysis was conducted to investigate the effects of thickness and mounted depth of CFRP laminates on ultimate load capacity and initial stiffness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.