Abstract

Corrosion of steel reinforced concrete members has stimulated the research on fiber-reinforced polymers (FRP) to be used as an internal reinforcement for concrete structures. The behavior of glass fiber-reinforced polymer (GFRP) reinforcing bars subjected to extreme temperatures is very critical for applications in North America, especially in Canada. There is a high demand for experimental studies to investigate the thermal stability of strength, along with the ultimate elongation, and modulus of GFRP bars. This paper evaluates the variation of mechanical properties of sand-coated GFRP reinforcing bars subjected to low temperatures (ranging from 0 to −100°C ) and elevated temperatures (ranging from 23 to 315°C ). Tensile, shear and flexural properties are investigated to get an overview of the thermal stability of mechanical properties of GFRP bars subjected to large variations of temperatures. Microstructural analyzes using scanning electronic microscopy (SEM), physical measurements by thermogravimetric...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.