Abstract
Using the theory of bifurcation, we provide and find gap soliton dynamics in a nonlinear Klein-Gordon model with anharmonic, cubic, and quartic interactions immersed in a parametrized on-site substrate potential. The case of a deformable substrate potential allows theoretical adaptation of the model to various physical situations. Nonconvex interactions in lattice systems lead to a number of interesting phenomena that cannot be produced with linear coupling alone. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive a variety of exotic solutions corresponding to the phase trajectories under different parameter conditions. Moreover, we demonstrate how and why traveling waves lose their smoothness and develop into solutions with compact support or breaking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.