Abstract
An important application of fiber-reinforced polymer (FRP) composites is as a confining material for concrete, both in the seismic retrofit of existing reinforced concrete columns and in the construction of concrete-filled FRP tubes as earthquake-resistant columns in new construction. The reliable design of these structural members against earthquake-induced forces necessitates a clear understanding of the stress-strain behavior of FRP-confined concrete under load cycles. This paper presents the results of an experimental study on the behavior of FRP-confined normal- and high-strength concrete under axial compression. A total of 24 aramid and carbon FRP-confined concrete cylinders with different concrete strengths and FRP jacket thicknesses were tested under monotonic and cyclic loading. Examination of the test results has led to a number of significant conclusions in regards to both the trend and ultimate condition of the axial stress-strain behavior of FRP-confined concrete. These results are presented, and a discussion is provided on the influence of the main test parameters in the observed behaviors. The results are also compared with two existing cyclic axial stress-strain models for FRP-confined concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.