Abstract

The behavior of fin-plate connections of a composite beam exposed to different fire scenarios was numerically studied by experimentally validated models. At elevated temperatures, the closure of the gap between the beam end and column was observed to transform a hinge connection to a moment connection, reducing the beam deflection. In fire, a slow cooling of the beam close to the connection is a favourable approach to affect the responses of the beam and the fin-plate connection. Under heating and cooling cycles, the axial forces developed in the beam fluctuated between compression and tension. At the end of the first cooling phase, the shear plate was found to be a critical member in which the further development of the axial tension force can fracture the fin-plate connection at the end of the second cooling phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.