Abstract

The dynamical behavior of ethylene and ethane confined inside single-walled carbon nanotubes has been studied using Molecular Dynamics and a fully atomistic force field. Simulations were conducted at 300 K in a broad range of molecular densities, 0.026 mol⋅L−1<ρ<15.751 mol⋅L−1(C2H4) and 0.011 mol⋅L−1<ρ<14.055 mol⋅L−1(C2H6), and were oriented towards the determination of bulk and confined phase self-diffusion coefficients. In the infinite time limit, Fickian self-diffusion is the dominant mode of transport for the bulk fluids. Upon confinement, there is a density threshold (ρ=5.5 mol⋅L−1) below which we observe a mixed mode of transport, with contributions from Fickian and ballistic diffusion. Nanotube topology seems to have only a small influence on the confined fluids’ dynamical properties; instead density (loading capacity) assumes the dominant role. In all cases studied and at a given density, the diffusivities of ethylene are larger than those of ethane, although the difference is relatively minor. We note the collapse of self-diffusivities obtained from the bulk fluids and confined phases into a unique single trend. These results suggest that it might be possible to infer dynamical properties of confined fluids from the knowledge of their bulk phase densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.