Abstract

Enzyme immobilized membranes combine catalysis and separation functions. Their application in large-scale continuous processes requires knowing the behavior under pressure. Also, the effects of enzyme location on the mass transfer limitation, membranes’ stability, and filtration performance should be investigated. In this study, urease (URE) and trypsin (TRY) enzymes were physically immobilized in/on the surface of a polyacrylonitrile (AN69) membrane through layer-by-layer (LbL) self-assembly method using polyethylenemine (PEI) and sodium-alginate (ALG) as cationic and anionic polyelectrolytes respectively. URE, located on the membrane’s surface, degraded urea in a reaction-controlled regime, and its immobilization did not significantly change the hydraulic permeability. On the other hand, the TRY enzyme attached to the membrane’s pores reduced the permeability and degraded the BAPNA in a diffusion-controlled region. In TRY immobilized membranes, the conversion increased linearly with the transmembrane pressure, while in URE immobilized ones, conversion was maximum at 1 bar. Sandwiching the enzymes between two polyelectrolytes resulted in the highest catalytic activities. This configuration maintained most of the URE activity in the long-term filtration, but it did not help prevent TRY’s activity loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call