Abstract

Recent work [J. A. Dunningham, V. Palge, and V. Vedral, Phys. Rev. A 80, 044302 (2009)] has shown how single-particle entangled states are transformed when boosted in relativistic frames for certain restricted geometries. Here we extend that work to consider completely general inertial boosts. We then apply our single-particle results to multiparticle entanglements by focusing on Cooper pairs of electrons. We show that a standard Cooper pair state consisting of a spin-singlet acquires spin-triplet components in a relativistically boosted inertial frame, regardless of the geometry. We also show that, if we start with a spin-triplet pair, two out of the three triplet states acquire a singlet component, the size of which depends on the geometry. This transformation between the different singlet and triplet superconducting pairs may lead to a better understanding of unconventional superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.