Abstract

Endocrine-disrupting chemicals (EDCs) in landfill leachates and the effluent from leachate treatment facilities have been analyzed by many researchers. However, seasonal and yearly variations and the influence of landfill age are still not clear. In this study, leachate was sampled on four occasions each, at different seasons, from two MSW landfills which receive different waste material. Then, the quantities of alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs) in leachate were determined. By sampling leachate from landfill cells of different age, the long-term behavior of EDCs was studied. Furthermore, leachate was also sampled at different points in the process of a leachate treatment system, and then the behavior of EDCs in the facility was studied. The concentrations of APs were as low as in surface waters, and OTs were not detected (detection limit was 0.01 μg/l), while BPA and DEHP, which were the most abundant of the four substances measured as PAEs, were found in all the leachates that were measured. Concentrations of BPA and DEHP were almost constant regardless of season, except for a couple of low concentrations observed for BPA. The varying composition of landfilled waste did not influence BPA and DEHP in leachate. Concentration of BPA in raw leachate tends to decrease as the years go by, but the concentration of DEHP was observed to remain at a constant level. BPA was considerably degraded by aeration for leachates from the two landfills, except when the leachate temperature was low. Aeration, coagulation/sedimentation, and biological treatment could not remove DEHP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.