Abstract
Domain constants are numbers attached to regions in the complex plane ℂ. For a region Ω in ℂ, letd(Ω) denote a generic domain constant. If there is an absolute constantM such thatM −1≤d(Ω)/d(Δ)≤M whenever Ω and Δ are conformally equivalent, then the domain constant is called quasiinvariant under conformal mappings. IfM=1, the domain constant is conformally invariant. There are several standard problems to consider for domain constants. One is to obtain relationships among different domain constants. Another is to determine whether a given domain constant is conformally invariant or quasi-invariant. In the latter case one would like to determine the best bound for quasi-invariance. We also consider a third type of result. For certain domain constants we show there is an absolute constantN such that |d(Ω)−d(Δ)|≤N whenever Ω and Δ and conformally equivalent, sometimes determing the best possible constantN. This distortion inequality is often stronger than quasi-invariance. We establish results of this type for six domain constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.