Abstract

Traditional coupling beams in coupled shear walls (CSWs) may be lack of required ductility or inconvenient to be fully repaired or replaceable after earthquake damage. To improve the CSW seismic performance, a type of new structural system, which is referred to as coupled shear walls with buckling-restrained steel plates (CSW–BRSP), is proposed and thoroughly studied. In the system, a pair of individual concrete wall is coupled through buckling-restrained steel plates instead of traditional concrete coupling beams. Based on the continuous medium method (CMM), stiffness and strength design formulas are developed for the seismic design of this system. Intensive investigations have been conducted to assess the undesirable axial forces in the buckling-restrained steel plates induced by lateral loads. In order to facilitate the application of this system, a detailed design procedure is also explicitly stated. Finally, an example of typical high-rise building is presented to illustrate the design procedure as well as demonstrate the excellent seismic performance of the proposed system by means of nonlinear time-history analysis. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.