Abstract

External confinement of concrete by means of high-strength fiber composites can significantly enhance its strength and ductility as well as result in large energy absorption capacity. The confinement mechanism may include fiber-wrapping of existing columns as a retrofitting measure or encasement of concrete in a fiber reinforced plastic (FRP) tube for new construction. Proper design of such hybrid columns, however, requires an accurate estimate of the performance enhancement. Current design methods use simple extension of the models developed for conventional reinforced concrete columns. Results from a series of uniaxial compression tests on concrete-filled FRP tubes are compared with the available confinement models in the literature. The present study indicates that these models generally result in overestimating the strength and unsafe design. The study also shows a unique characteristic of confinement with fiber composites in that, unlike steel, FRP curtails the dilation tendency of concrete, as it re...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.