Abstract

The mechanical characterization of advanced pore morphology (APM) foam, consisting of sphere-like metallic foam elements, is very limited since APM foam has been developed only recently. The purpose of this research was thus to determine the behavior of APM spheres and its composites when subjected to compressive loading. Single metallic APM spheres have been characterized with experimental testing and computational simulations, providing the basic properties and knowledge for an efficient composition of composite APM foam structures. Then, the APM foam elements were molded with epoxy matrix resulting in new composite structures. These composites have been adhered together with the epoxy resin achieving partial and syntactic morphology. The mechanical characterization of composite APM foam structures was based on experimental testing results with free and confined boundaries. The results of the performed research have shown valuable mechanical properties of the composite APM foam structures. Furthermore, they offer new possibilities for their use in general engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call