Abstract

We performed molecular dynamic simulations of a model active nematic confined to a two-dimensional nanoscopic circular region under both tangential and radial anchoring boundary conditions. This active material is assumed to be composed of elongated chiral particles which interact with each other by means of isotropic Lennard-Jones and anisotropic Maier-Saupe-like potentials. These particles have the lateral appendage emitting a jet of some substance generated by a certain internal chemical reaction. As a result, such elongated particles are exposed to both the reactive self-propelled force and the torque that provide an additional translational movement of particles and a self-rotation with respect to their geometric centers. It has been found that the chiral active nematics under consideration form time-dependent vortex-like structures with two +1/2 topological defects which are similar to experimentally observed structures in active materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.