Abstract
Fibre Reinforced Polymer (FRP) wrapping is one of the techniques used to strengthen the concrete structures. Recently these techniques are implemented for the strengthening of steel structures. This study emphasizes on experimental investigation of Carbon Fibre Reinforced Polymer (CFRP) strengthened steel hollow sections under axial static and axial cyclic loading. In CFRP strengthened steel hollow section, number of layers and orientation of layers are the key factors for the prediction of axial capacity. A series of tests were conducted on CFRP strengthened steel Circular Hollow Sections (CHS) by varying the number and orientation of the CFRP layers under axial static and axial cyclic loading. From the experimental results, it was observed that the strength, ductility and stiffness has increased in the CFRP strengthened specimens. The results highlight that the axial load carrying capacity of CFRP strengthened circular hollow steel section has been increased up to 37.13% in static loading and 42.86% in axial cyclic loading. CFRP confinement could be responsible for the increase in the axial capacity of steel hollow section and this method could be used to enhance the performance of existing steel hollow sections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.