Abstract

Acetobacter xylinum NQ-5 (ATCC 53582) and AY-201 (ATCC 23769) cultivated in the Hestrin–Schramm medium containing d-glucose with a natural 13C-abundance of 1.1% were investigated regarding their cell division rates and the bacterial movements. Comparative studies were carried out in the presence of d-glucose-U- 13C 6 with a uniform 13C-labeling of 99% as the sole carbon source. The bacterial growth rates in numbers were found to increase in the 13C-enriched media by about 13% for NQ-5 and 26% for AY-201, respectively. The movements of single cells caused by the inverse force of the secretion and deposition of cellulose nanofibers on nematic ordered cellulose (NOC) templates were investigated by real-time video analyzes using light microscopy. As a result, d-glucose-U- 13C 6 reduced the speed of motion for both strains, which was an opposite trend to the above growth rates in the cell division. The deposited cellulose fibers were proved to be in a cellulose crystalline form by CP/MAS 13C NMR and NIR FT Raman spectroscopic measurements, although the biosynthesized and thereafter-deposited cellulose has a strong interaction with the surface of NOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call