Abstract

Film boiling chemical vapor infiltration (FB-CVI) technique is considered as one of the fastest process to manufacture carbon fiber reinforced carbon (CFRC) composite products. In the present work, the characteristics of the carbon matrix deposited through FB-CVI process under deposition and infiltration are investigated. A novel reactor with unique features was developed, to simulate the process conditions. Utilizing the indigenously build reactor, pyrocarbon (PyC) was deposited on graphite substrates. The kinetics of the process is investigated within temperature range of 1100 °C–1150 °C and characteristics of carbon matrix was investigated. The nature of the carbon deposited and effect of graphitization on the microstructure of the deposited PyC was examined. The role of preform architecture on densification through FB-CVI process and characteristics of the composites were further studied. The mechanical behavior of the FB-CVI based CFRC material were investigated through nanoindentation technique. The present study has provided process guidelines for densification of 2D continuous fibers based preform. Structure property relationship is evolved to optimally develop CFRC composite products for aerospace applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call