Abstract

In this research, the potential benefits of using various structural types of cemented soil, including block-type, column-type, and wall-type, to reinforce the active zone behind a quay wall were investigated by experimental and numerical methods. The response of the quay wall and ground was analysed from aspects of soil movement, quay wall displacement, lateral earth pressure, and bending moment, and a close agreement between the experimental and numerical results was observed. Experimental and numerical results showed that the cemented soil effectively prevented potential deep soil sliding, and then lateral displacement of the quay wall and ground deformation was reduced. Among various structural patterns, the case with the block-type cemented soil exhibited smaller lateral earth pressure on the quay wall, while the case with the wall-type cemented soil more effectively reduced the bending moments and lateral displacements of the quay wall; therefore, wall-type cemented soil seems to be more favourable considering their improved performance under the same load intensities and excavation depth. This research provides a hint and guideline for the preliminary design of cemented soil-stabilised sheet pile quay structures in soft clay based on the lateral load-reduction effect of the varying structural types of the cemented soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call