Abstract

The behavior of a two-phase flow inside the inlet pipeline of a catalytic reactor is investigated. In addition to the classical approach using familiar flow diagrams, means of computational fluid dynamics are used for three-dimensional modeling of the spatial distribution of phases in the pipeline during operation. Results show a nonuniform distribution of the liquid phase over the over the pipeline outlet cross section surface, plus a mass flow of the liquid phase that is not stable over time. The maximum peak flow rates exceed the average values by ~300%. Compared to data from flow diagrams, CFD modeling shows that a change in the gas flow in the investigated range does not alter the nature of a two-phase flow, but an increase in the gas flow reduces the irregularity of the distribution of the liquid phase over the pipeline outlet cross section. Data on the behavior of a flow are needed to design catalytic reactor structures that ensure the uniform distribution of a two-phase flow to the catalyst bed for, e.g., hydrotreating reactors in the oil refining industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.