Abstract

The behavior of a droplet train in a microfluidic network with hydrodynamic traps in which the hydrodynamic resistive properties of the network are varied is investigated. The flow resistance of the network and the individual droplets guide the movement of droplets in the network. In general, the flow behavior transitions from the droplets being immobilized in the hydrodynamic traps at low flow rates to breaking up and squeezing of the droplets at higher flow rates. A state diagram characterizing these dynamics is presented. A simple hydrodynamic circuit model that treats droplets as fluidic resistors is discussed, which predicts the experimentally observed flow rates for droplet trapping in the network. This study should enable the rational design of microfuidic devices for passive storage of nanoliter-scale drops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call