Abstract

We investigate the behavior of a two-level quantum system in contact with a classical heat bath, e.g., a solute particle with internal degrees of freedom immersed in a solvent of massive particles. Using a combination of analytical and numerical methods, we obtain precise information about localization, time-displaced correlation functions, and the frequency-dependent susceptibility of such solute particles. We find that these quantities can have a strong dependence on the density of the solvent fluid, with the maximum changes from the behavior of the corresponding isolated quantum system occurring in many cases at very low densities. We compare the exact results with those obtained by path integral Monte Carlo. There is good agreement with the imaginary time correlations, but analytic continuation to real time proves elusive: even with the best numerical data on the former, we can only get very gross features of the latter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.