Abstract

This paper investigates the motion of a micron-sized air bubble in the operating fluid dynamic bearings (FDBs) of a spindle motor in a computer hard disk drive. The flow field of FDBs is calculated by solving the Navier---Stokes equation and the continuity equation. The two-phase flow in the air-oil interface is simultaneously solved by using the finite volume method and the volume of fluid (VOF) method. We then analyze the motion of a micron-sized air bubble by applying the discrete phase modeling (DPM) method to the calculated flow field of FDBs. The motion of a micron-sized air bubble determined using the DPM method is verified by comparison with the trajectory of the micron-sized air bubble determined using the VOF method. The trajectories of a micron-sized air bubble with different initial positions in the FDBs are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call