Abstract
A simple and efficient method based on semi-supervised learning technique is proposed for behavior modeling and abnormality detection. The method is composed of the following steps: (1) Dynamic time warping (DTW) based spectral clustering method is used to obtain a small set of samples to initialize the hidden Markov models (HMMs) of normal behaviors; (2) The HMMs' parameters are further trained by the method of iterative learning from a large data set; (3) Maximum a posteriori (MAP) adaptation technique is used to estimate the HMMs' parameters of abnormal behaviors from those of normal behaviors; (4) The topological structure of HMM is finally constructed to detect abnormal behaviors. The main characteristic of the proposed method is that it can automatically select the number of normal behavior patterns and samples from the training dataset to build normal behavior models and can effectively avoid the running risk of over-fitting when the HMMs of abnormal behaviors are learned from sparse data. Experimental results demonstrate the effectiveness of the proposed method in comparison with other related works in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.