Abstract

This paper provides a new approach to the dynamic motion planning problems of mobile robots in uncertain dynamic environments based on the behavior dynamics from a control point of view. The fundamental behavior of a mobile robot in motion planning is regarded as a dynamic process of the interaction between the robot and its local environment, and then it is modeled and controlled for the motion-planning purpose. Based on behavior dynamics, the dynamic motion-planning problem of mobile robots is transformed into a control problem of the integrated planning-and-control system. And the dynamic motion-planning problem can be transformed into a conventional optimization problem in the robot's acceleration space. Realization of the collision-avoidance behavior is shown to be just a control problem of the robot's acceleration. The proposed method can directly provide the desired acceleration for mobile robots. No restrictions are assumed on the shape and trajectories of obstacles. No local minima are encountered in most cases. Collision avoidance between multiple mobile robots can also be realized. Stability of the whole planning-and-control system can be guaranteed. Our method provides a new insight to the motion-planning problem of mobile robots based on behavior dynamics and from the control point of view. Simulation experiments illustrate our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.