Abstract

Microplastics (MPs) and antibiotics are emerging pollutants in aquatic environments. MPs can absorb antibiotics, resulting in compound pollution. Batch adsorption experiments were used to investigate the adsorption behavior of CIP on polylactic (PLA) and polyethlene (PE) under various environmental conditions. After a lengthy aging process, both MPs underwent significant physicochemical changes. The equilibrium adsorption capacities of aged PLA and PE were 0.382mg/g and 0.28mg/g, respectively, which increased by 18.06% and 75% compared to pristine PLA and PE. The sorption capacity of MPs increased when the pH of the solution approached the dissociation constant (6.09, 8.74) of CIP. When the salinity of the solution was 3.5%, the adsorption capacity of MPs was reduced by more than 65%. The adsorption capacity of MPs rapidly decreased when 20mg/L fulvic acid was added. Because norfloxacin (NOR) competes for adsorption sites on the microplastic, CIP adsorption is inhibited. Based on the adsorption models, FTIR, and XPS spectra, we demonstrated that the process was monolayer adsorption, with chemical and physical mechanisms including hydrogen bonding, π-π conjugation, ion exchange, and electrostatic interactions controlling it. Thus, PLA and PE microplastics may be a potential vector for CIP in water, and their interaction is mainly influenced by the physicochemical properties of the MPs and environmental factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call