Abstract

Microplastics (MPs) are emerging pollutants that have gained much attention due to their potential harm to aquatic ecosystems and organisms. In particular, MP conjugates are loaded with chemical contaminants (e.g., atrazine pesticide), which may be ingested by organisms and can pose higher risks. However, the combined pollution effects and interaction mechanisms remain poorly understood. In this study, we systematically explored the adsorption behaviors and mechanisms of atrazine (ATZ) on pristine and aged MPs using kinetics, isotherms, and thermodynamic models. The target MPs included polystyrene (PS), polyethylene (PE), and polypropylene (PP) as well as the corresponding aged types. Moreover, the effects of pH, humic acid (HA), ionic strength, and ion species (Cl−, SO42−, HCO3−, Mg2+, and Ca2+) of aqueous factors were evaluated. The adsorption capacities of MPs under kinetic equilibrium conditions were as follows: aged PE (0.940 mg g−1) > aged PP (0.677 mg g−1) > aged PS (0.663 mg g−1) > PS (0.565 mg g−1) > PE (0.535 mg g−1) > PP (0.410 mg g−1). The adsorption kinetics and isotherm model results suggested a combination of physisorption and chemisorption. The aging process and pH significantly affected the intrinsic charge on the surface of the MPs and their adsorption capacities. Moreover, the presence of water medium parameters might enhance or inhibit adsorption of different MPs. Hydrophobic and electrostatic attraction mainly contributed to the adsorption of ATZ on pristine MPs, whereas complex surface diffusion and hydrogen bonding dominated the ATZ adsorption on aged MPs with more oxygen-containing groups. In addition, we examined the desorption performance of ATZ from MPs under simulated gastric and intestinal conditions of warm-blooded animals, and found that the ATZ desorption ratio of aged PE (35.3%) showed the most significant effects among the six target types of MPs. This study provides in-depth insights into the co-existence and complex behaviors of MPs and the pesticide pollutant ATZ, to attract further attention to their ecological risks in freshwater environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call