Abstract

We recall five families of polynomials constituting a part of the so-called Askey–Wilson scheme. We do this to expose properties of the Askey–Wilson (AW) polynomials that constitute the last, most complicated element of this scheme. In doing so we express AW density as a product of the density that makes q-Hermite polynomials orthogonal times a product of four characteristic function of q-Hermite polynomials (2.9) just pawing the way to a generalization of AW integral. Our main results concentrate mostly on the complex parameters case forming conjugate pairs. We present new fascinating symmetries between the variables and some newly defined (by the appropriate conjugate pair) parameters. In particular in (3.12) we generalize substantially famous Poisson–Mehler expansion formula (3.16) in which q-Hermite polynomials are replaced by Al-Salam–Chihara polynomials. Further we express Askey–Wilson polynomials as linear combinations of Al-Salam–Chihara (ASC) polynomials. As a by-product we get useful identities involving ASC polynomials. Finally by certain re-scaling of variables and parameters we reach AW polynomials and AW densities that have clear probabilistic interpretation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.