Abstract
Many studies have addressed spatial correlation in traffic collision modeling. It has been generally concluded that the inclusion of spatial correlation improves model goodness of fit and the precision of parameter estimates. However, the application in before–after safety evaluation has rarely been documented in the traffic safety literature. The objectives of the presented study were to ( a) apply both the univariate and multivariate full Bayesian (FB) spatial models in before–after safety evaluation and ( b) compare the results with those of nonspatial FB models. A reduction of the posted speed limit in urban residential neighborhoods in Edmonton, Alberta, Canada was used as a case study for the before–after safety evaluation. Yearly collision data and other neighborhood characteristics data were collected for a group of treated and reference neighborhoods to develop macroscopic models. The four models considered in this study were ( a) Poisson–lognormal, ( b) Poisson–lognormal with conditional autoregressive (CAR) distribution, ( c) multivariate Poisson–lognormal, and ( d) multivariate Poisson–lognormal with CAR distribution. The results showed that the multivariate Poisson–lognormal with CAR distribution model for collision severities outperformed the other three models according to the deviance information criteria. Parameter estimates showed slight differences across the models. However, for the current data set, the results of the before–after safety evaluation showed similar findings across the models. Estimated collision reductions were 13%, 24%, and 12% for total, severe, and property-damage-only collisions, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.