Abstract
We present a fully unsupervised learning pipeline, which involves both a projection method and a clustering algorithm dedicated to the pixel-wise classification of multitemporal SAR images. We design a Convolutional Autoencoder as the method to project our time series onto a lower dimensional latent space, where semantically similar temporal signals are placed close together. The additional use of convolutional layers as feature extraction steps allows us to exploit the sequential nature of time series, exhibiting higher representation performance than fully connected layers. The extracted clusters can encapture different semantic levels to either separate classes or extract outlying temporal signals. The application of this method to crop-types mapping enables the extraction of major crop-types within a scene, without supervision. In a labeled context, this method also allows for the extraction of outlying profiles which can lead to the discovery of mislabeled time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.